Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 176(7): 879-889, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30681136

RESUMO

BACKGROUND AND PURPOSE: Some clinical studies have reported increased myocardial infarction in people living with human immunodeficiency virus (HIV) taking the antiretroviral abacavir sulphate (ABC). Given that clinical studies contain confounding variables (e.g., HIV-associated factors), we investigated the pharmacological effects of antiretrovirals on platelet function in HIV-negative volunteers in order to identify mechanisms of increased cardiovascular risk. EXPERIMENTAL APPROACH: Platelets were isolated from healthy volunteers and HIV-negative subjects enrolled on a Phase I clinical trial and platelet function evaluated using aggregometry and flow cytometry. In vivo platelet thromboembolism was monitored in anaesthetized mice. KEY RESULTS: Human platelet aggregation was unaffected by all antiretrovirals tested, but ABC treatment led uniquely to increased platelet granule release. ABC also interrupted NO-mediated inhibition of platelet aggregation and increased in vivo aggregation in mice. Another antiretroviral, tenofovir, did not affect platelet function. Furthermore, aggregation and activation of platelets isolated from 20 subjects taking clinically relevant doses of tenofovir were comparable to baseline samples. CONCLUSIONS AND IMPLICATIONS: ABC can enhance platelet activation, independently of variables that confound clinical studies, suggesting a potential pharmacological effect that is absent with tenofovir. Mechanistically, we propose that ABC enhances platelet degranulation and interrupts NO-mediated platelet inhibition. The interaction of ABC with NO signalling is demonstrated by ABC-mediated enhancement of aggregation in vivo and in vitro that persisted in the presence of NO. Although an association between ABC and platelet activation has not been confirmed in patients, these findings provide evidence of a mechanistic link between platelet activation and antiretroviral therapy.


Assuntos
Fármacos Anti-HIV/farmacologia , Plaquetas/efeitos dos fármacos , Didesoxinucleosídeos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Tenofovir/farmacologia , Adolescente , Adulto , Animais , Plaquetas/fisiologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Óxido Nítrico/fisiologia , Adulto Jovem
2.
Br J Pharmacol ; 175(16): 3333-3346, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29797311

RESUMO

BACKGROUND AND PURPOSE: Platelet activation provides a critical link between inflammation and thrombosis. Sulforaphane (SFN), a naturally occurring isothiocyanate, has been shown to display both anti-inflammatory and anti-thrombotic actions in the systemic microvasculature. As inflammation promotes thrombosis and vice versa, in this study we investigated whether SFN is able to reduce inflammatory potentiation of thrombotic events, suppress platelet activation and thrombus formation in the cerebral microvasculature. EXPERIMENTAL APPROACH: Thrombosis was induced in the murine brain using the light/dye-injury model, in conjunction with LPS treatment, with and without SFN treatment. In vitro and in vivo platelet assays (aggregation, flow and other functional tests) were also employed, using both human and murine platelets. KEY RESULTS: SFN was found to reduce LPS-mediated enhancement of thrombus formation in the cerebral microcirculation. In tail-bleed experiments, LPS treatment prolonged bleeding time, and SFN treatment was found to protect against this LPS-induced derangement of platelet function. SFN inhibited collagen-mediated platelet aggregation in vitro and in vivo and the associated adhesion and impaired calcium signalling. Furthermore, glycoprotein VI was shown to be involved in the protective effects observed with SFN treatment. CONCLUSIONS AND IMPLICATIONS: The data presented here provide evidence for the use of SFN in preventing stroke in selected high-risk patient cohorts.


Assuntos
Plaquetas/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Trombose/tratamento farmacológico , Animais , Plaquetas/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/metabolismo , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Microcirculação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Sulfóxidos , Trombose/fisiopatologia
3.
Thromb Haemost ; 117(12): 2283-2290, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29212116

RESUMO

Mouse models of thromboembolism are frequently used to investigate platelet function in vivo and, according to European Union (EU) legislation, must be conducted in the context of replacement, refinement and reduction. We have previously developed a refined real-time mouse model of thromboembolism as an alternative to models of thromboembolic mortality which inflict considerable pain and suffering. Real-time monitoring involves infusion of radiolabelled platelets into the circulation of anaesthetized mice, and platelet aggregation is measured as increases in platelet-associated counts in the pulmonary vasculature following injection of platelet agonists. This gives a definitive data set on the tissue localization and extent of platelet activation. We developed an additional, more simplistic alternative to mortality models based on blood microsampling which entails the measurement of circulating platelet counts following agonist stimulation. Blood microsamples were collected from the tail vein of anaesthetized mice at three different time points leading to a reduction in animal numbers. Platelet counts significantly dropped 1 minute after stimulation with collagen or thrombin and were restored over 10 minutes. These results correlate with those obtained via real-time monitoring and were confirmed by immunohistochemistry. Pre-treatment of mice with aspirin significantly inhibited the decrease in platelet counts following collagen. These data suggest that blood microsampling may be implemented as a simplistic refined alternative to mortality models of thromboembolism when specialized monitoring equipment, or use of radioactive isotopes for real-time monitoring, which remains the 'gold standard', is not feasible. Microsampling refines and reduces animal procedures in compliance with current EU legislation.


Assuntos
Plaquetas/fisiologia , Modelos Animais de Doenças , Tromboembolia/patologia , Animais , Células Cultivadas , Colágeno/metabolismo , Hemostasia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Agregação Plaquetária , Contagem de Plaquetas , Trombina/metabolismo , Tromboembolia/fisiopatologia
4.
FASEB J ; 30(12): 4256-4266, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27633788

RESUMO

Regular consumption of low-dose aspirin reduces the occurrence of colorectal, esophageal, stomach, and gastrointestinal cancers. The underlying mechanism is unknown but may be linked to inhibition of angiogenesis. Because the effective doses of aspirin are consistent with the inhibition of cyclooxygenase-1 in platelets, we used liquid chromatography with tandem mass spectrometry analyses and immunoassays of human platelet releasates coupled with angiogenesis assays to search for the mediators of these effects. Blood or platelet-rich plasma from healthy volunteers stimulated with platelet activators produced a broad range of eicosanoids. Notably, preincubation of platelets with aspirin, but not with a P2Y12 receptor antagonist, caused a marked reduction in the production of 11-hydroxyeicosatetraenoic acid (HETE) and 15(S)-HETE, in addition to prostanoids such as thromboxane A2 Releasates from activated platelets caused cell migration and tube formation in cultured human endothelial cells and stimulated the sprouting of rat aortic rings in culture. These proangiogenic effects were absent when platelets were treated with aspirin but returned by coincubation with exogenous 15(S)-HETE. These results reveal 15(S)-HETE as a major platelet cyclooxygenase-1 product with strong proangiogenic effects. Thus, 15(S)-HETE represents a potential target for the development of novel antiangiogenic therapeutics, and blockade of its production may provide a mechanism for the anticancer effects of aspirin.-Rauzi, F., Kirkby, N. S., Edin, M. L., Whiteford, J. Zeldin, D. C., Mitchell, J. A., Warner, T. D. Aspirin inhibits the production of proangiogenic 15(S)-HETE by platelet cyclooxygenase-1.


Assuntos
Aspirina/farmacologia , Plaquetas/efeitos dos fármacos , Ciclo-Oxigenase 1/metabolismo , Endotélio/efeitos dos fármacos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 1/efeitos dos fármacos , Eicosanoides/metabolismo , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo
5.
FASEB J ; 29(11): 4568-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26183771

RESUMO

Eicosanoids are important vascular regulators, but the phospholipase A2 (PLA2) isoforms supporting their production within the cardiovascular system are not fully understood. To address this, we have studied platelets, endothelial cells, and leukocytes from 2 siblings with a homozygous loss-of-function mutation in group IVA cytosolic phospholipase A2 (cPLA2α). Chromatography/mass spectrometry was used to determine levels of a broad range of eicosanoids produced by isolated vascular cells, and in plasma and urine. Eicosanoid release data were paired with studies of cellular function. Absence of cPLA2α almost abolished eicosanoid synthesis in platelets (e.g., thromboxane A2, control 20.5 ± 1.4 ng/ml vs. patient 0.1 ng/ml) and leukocytes [e.g., prostaglandin E2 (PGE2), control 21.9 ± 7.4 ng/ml vs. patient 1.9 ng/ml], and this was associated with impaired platelet activation and enhanced inflammatory responses. cPLA2α-deficient endothelial cells showed reduced, but not absent, formation of prostaglandin I2 (prostacyclin; control 956 ± 422 pg/ml vs. patient 196 pg/ml) and were primed for inflammation. In the urine, prostaglandin metabolites were selectively influenced by cPLA2α deficiency. For example, prostacyclin metabolites were strongly reduced (18.4% of control) in patients lacking cPLA2α, whereas PGE2 metabolites (77.8% of control) were similar to healthy volunteer levels. These studies constitute a definitive account, demonstrating the fundamental role of cPLA2α to eicosanoid formation and cellular responses within the human circulation.


Assuntos
Antígenos de Plaquetas Humanas/genética , Plaquetas/enzimologia , Dinoprostona/genética , Células Endoteliais/enzimologia , Epoprostenol/genética , Leucócitos/enzimologia , Mutação , Adulto , Plaquetas/patologia , Dinoprostona/biossíntese , Células Endoteliais/patologia , Epoprostenol/biossíntese , Feminino , Humanos , Leucócitos/patologia , Masculino , Ativação Plaquetária/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...